Developing Sustainable Decarbonised Polygeneration System Concept for the Production of Hydrogen, Chemicals and Energy
Polygeneration system is a highly integrated, flexible and robust system design concept that is capable of generating a spectrum of products such as chemicals, fuels, hydrogen, heat and power. This research will consider using organic waste and biomass resources as the feedstock. Unlocking the full potential of utilising organic waste requires consideration of multiple product generation and combining different technologies into hybrid systems. Chemical engineering principles, process integration and intensification techniques are needed in designing the polygeneration system in order to achieve maximum resource efficiency and minimum environmental impact by recovering by-product and waste streams into value-added products.
What would you expect from this project?
- Computational modelling: This project will require simulation modelling and optimisation techniques using software such as Aspen Plus, Matlab and GAMS, and will also involve software development using Python.
- Sustainability assessment: This research will involve rigorous sustainability assessment including techno-economic analysis and environmental life cycle assessment (LCA). LCA software such as SimaPro is required.
It is anticipated that this research will generate principles and methodologies for designing a complex polygeneration system.
Applicants should have received a First or Upper Second Class honours degree in Chemical Engineering, Environmental Engineering, Chemistry or a similar discipline. Applicants should be highly motivated, able to work independently and in a team, and have good written and verbal communication skills.
Previous studies related to polygeneration systems
- Ng, K.S., Martinez-Hernandez, E., 2020. Techno-economic assessment of an integrated bio-oil steam reforming and hydrodeoxygenation system for polygeneration of hydrogen, chemicals, and combined heat and power production, in Towards Sustainable Chemical Processes, J. Ren, Y. Wang, and C. He, (Ed.), p. 69-98, Elsevier.
- Ng, K.S., Martinez Hernandez, E., 2016. A systematic framework for energetic, environmental and economic (3E) assessment and design of polygeneration systems, Chem Eng Res Des, 106: 1-25.
- Ng, K.S., Zhang, N., Sadhukhan, J., 2013. Techno-economic analysis of polygeneration systems with carbon capture and storage and CO2 Chem Eng J. 219: 96-108.
How to apply
If you are interested in applying for the above PhD topic please follow the steps below:
- Contact the supervisor by email or phone to discuss your interest and find out if you would be suitable. Supervisor details can be found on this topic page. The supervisor will guide you in developing the topic-specific research proposal, which will form part of your application.
- Click on the 'Apply here' button on this page and you will be taken to the relevant PhD course page, where you can apply using an online application.
- Complete the online application indicating your selected supervisor and include the research proposal for the topic you have selected.
Good luck!
This is a self funded topic
Brunel offers a number of funding options to research students that help cover the cost of their tuition fees, contribute to living expenses or both. See more information here: /research/Research-degrees/Research-degree-funding. The UK Government is also offering Doctoral Student Loans for eligible students, and there is some funding available through the Research Councils. Many of our international students benefit from funding provided by their governments or employers. Brunel alumni enjoy tuition fee discounts of 15%.
Meet the Supervisor(s)
Kok Siew Ng - Dr Kok Siew Ng is Senior Lecturer (Associate Professor) in Chemical Engineering at СʪÃÃÊÓƵ London and an NERC Fellow. He joined Brunel in March 2022 as a Lecturer (Assistant Professor) after the completion of his 4-year independent NERC fellowship at the University of Oxford. He is currently leading the and the interdisciplinary
MSc in Advanced Chemical Engineering (Hydrogen and Low Carbon Technologies) at Brunel.
Kok Siew was the Co-Investigator and Coordinator of the project () – a university-wide initiative focusing on tackling various environmental challenges using an interdisciplinary approach, funded through the £10 million NERC Changing the Environment programme, from 2022-2023. The sprint project aims to develop strategies for determining the best regional combination of nutrient recovery and utilisation options for both economic viability and environmental benefits. Prior to joining Brunel, Kok Siew was a UKRI/NERC Industrial Innovation (Rutherford) Research Fellow and Lecturer in Chemical Engineering at the Department of Engineering Science, University of Oxford, from 2018 to 2022. During his time in Oxford, he was a Principal Investigator for the project 'A systems approach to synergistic utilisation of secondary organic streams' (£0.5 million), funded by NERC. The project aimed to explore novel approaches to addressing challenges in organic waste management and achieving circular economy. As the first Research Fellow in the Department to be offered a concurrent lectureship contract, he took on the role of delivering comprehensive full-module teaching. This includes conducting lectures, guiding tutorials, managing exams, and overseeing MEng project supervision. He completed his MEng Chemical Engineering with Chemistry (First Class Honours) in 2008, and later gained his PhD in 2011 from the Centre for Process Integration (CPI), The University of Manchester. After completing his PhD, he joined Process Integration Limited (PIL) as a consultant and later took up a position as a Postdoctoral Research Fellow at the Centre for Environment and Sustainability (CES), University of Surrey.
Kok Siew is a chemical engineer by training with >15 years of research and industrial consultancy experience in systems engineering, process integration, techno-economic analysis and environmental life cycle assessment (LCA). His research vision is to develop novel and sustainable solutions from a systems engineering perspective, to facilitate the transition of the chemical, energy and waste industries from a fossil-based, linear system to one that is fundamentally sustainable by using renewables as the mainstream resources and by fully embracing circular economy principles. He has contributed to more than 10 UK and international projects funded by NERC, Innovate UK, EU FP7, Royal Academy of Engineering and Newton Fund. His research is significant in terms of addressing global challenges in the 21st century, aligned with the UN SDG 7 and 12, the UK Industrial Strategy, and international ambitions to achieving circular economy and net-zero target.
Kok Siew has published more than 40 articles including journals, book chapters and magazine articles. He has authored "" (2024) and co-authored “” (2014). His work related to decarbonisation of energy systems has been recognised by the (best publication) in 2011. Furthermore, Kok Siew has been nominated for the in 2022 for his contribution in actively promoting environmental sustainability through his research vision, which develops sustainable solutions from a systems engineering perspective. He is an Editorial Board Member of journal and also a reviewer for French ANR and UKRI/EPSRC proposals.
Kok Siew is enthusiastic in establishing international collaboration with researchers from multidisciplinary background. He has been working closely with international academic and industrial organisations in the UK, Europe, China and South East Asia. He has organised and participated in a number of British Council/Newton Fund workshops in Malaysia, Mexico, Brazil, Kazakhstan and China, and attended the Royal Academy of Engineering Frontiers of Engineering for Development Symposium “From feeding people to nourishing people”. He has a long-term ambition in influencing resources and waste management practices in developing countries towards sustainable development through cross-disciplinary and cross-sectoral collaboration between the UK and international organisations. His ambition in international development together with the objectives of SYNERGORS are well aligned with the UK Industrial Strategy in enhancing resource efficiency and mitigating pollution and waste materials, while achieving a sustainable industrial growth and a more resilient economy at global level.
Awards and Achievements -
- Nominated for the , 2022.
- , Newton-Al-Farabi UK-Kazakhstan workshop “Low-carbon Future: Efficient Management of Resources and Energy”, 26-28 September 2016, Astana, Kazakhstan.
- for the best publication, 2011 - “Ng, K.S., Lopez, Y., Campbell, G.M., Sadhukhan, J., 2010. Heat integration and analysis of decarbonised IGCC sites. Chem Eng Res Des., 88 (2): 170-188.”
- PhD Scholarships (2008-2011): Overseas Research Scholarship (ORS), Manchester Alumni Funds, Process Integration Research Consortium (PIRC) Research Funds, School of Chemical Engineering and Analytical Science Scholarship
- MEng Chemical Engineering with Chemistry Specialist Subject Course Prize (ranked 1st in the cohort), 2008, The University of Manchester.