

Alexander Ossipov

School of Mathematical Sciences, University of Nottingham, UK

Hamiltonian on a *d*-dimensional lattice:

Outline

- 1. Definition of the simplex model and the moments of the eigenstates
- 2. Field-theoretical representation for the moments of the eigenstates
- 3. Moments of the eigenstates in the simplex model

Supersymmetric representation

SD_SA commutative (bosonic) variables

 χ_R , χ_A anti-commutative (fermionic) variables

7 out 8 variables can be integrated out in the limit $\epsilon \rightarrow 0$

$$T = t_r$$

Outline

- 1. Definition of the simplex model and the moments of the eigenstates
- 2. Field-theoretical representation for the moments of the eigenstates
- 3. Moments of the eigenstates in the simplex model

Anderson model on a simplex

-- 1 0 0

Moments of the eigenstates

$f_{1} = \alpha + \frac{1}{\alpha} + \frac{$

Comparison with numerical simulations

Comparison with numerical simulations

Physical