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Goal: describe statistical properties of eigenvalues of N × N

matrices with random entries, in the limit N →∞.

Here we will restrict attention to Wigner matrices (entries are

independent and identically distributed random variables).

Wigner matrices have been introduced by Wigner to describe

excitation spectrum of heavy nuclei.

First step towards understanding of more complicated ensembles

of random matrices (i.e. band matrices) and random Schr�odinger

operators (Anderson model) in the metallic phase.
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Hermitian Wigner Matrices: N×N matrices H = (hkj)1≤k;j≤N
such that H∗ = H and

hkj =
1√
N

�
xkj + iykj

�
for all 1 ≤ k < j ≤ N

h



Gaussian Unitary Ensemble (GUE): simplest example of her-
mitian Wigner ensemble. Probability density given by

P (H)dH = const · e−
N
2 Tr (H2)dH

Big advantage: joint eigenvalue distribution is explicit

p(�1; : : : ; �N) = const ·
NY
i<j

(�i − �j)2 e
−N2

PN
j=1 �

2
j :

Dyson’s sine-kernel distribution for GUE: using the explicit
formula for density, local eigenvalue statistics can be computed
in limit N →∞. Let

p(k)(�1; : : : ; �k) =
Z

d�k+1 : : :d�N p(�1; : : : ; �N)

be the k-point correlation function. Then

1

%ksc(E)
p(k)

�
E +

x1

N%sc(E)
; :: ;E +

xk
N%sc(E)

�
→ det

 
sin(�(xi − xj))

�(xi − xj)

!
i;j≤k
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Semicircle Law (Wigner, 1955): for any � > 0,

lim
�→0

lim
N→∞

P
 �����N [E − �

2;E + �
2]

N�
− �sc(E)

����� ≥ �
!

= 0

where

N [I] = number of eigenvalues in interval I

�sc(E) =
1

2�

q
1− E2=4:

Remark 1: Wigner result concerns the macroscopic density, that

is the density in intervals containing order N eigenvalues.

Remark 2: semicircle independent of distribution of entries.
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Local Semicircle Law: what about density in small intervals?

Theorem 1 [Erd}os-S.-Yau, 2008]: Suppose E e�x
2
ij < ∞ for

some � > 0, and �x |E| < 2. Then, for any � > 0,

lim
K→∞

lim
N→∞

P

0@������
N
h
E − K

2N ;E + K
2N

i
K

− �sc(E)

������ ≥ �
1A = 0

More precisely, we show that

P

0@������
N
h
E − K

2N ;E + K
2N

i
K

− �sc(E)

������ ≥ �
1A ≤ Ce−c�√K

for all K > 0, uniformly in N > N0(�).

On intermediate scales, if �(N) → 0 such that N�(N) → ∞, we
have

lim
N→∞

P

0B@
�������
N
h
E − �(N)

2 ;E + �(N)
2

i
N�(N)

− �sc(E)

������� ≥ �
1CA = 0
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Main ingredients of proof: upper bound on density and �xed

point equation for Stieltjes transform.

Upper bound: observe that

N [E − �=2; E + �=2] =
X
�

1(|�� − E| ≤ �)

≤
X
�

�2

(�� − E)2 + �2
= � Im

X
�

1

�� − E − i�
and hence

� =
N [E − �=2; E + �=2]

N�

≤
1

N
Im Tr

1

H − E − i�
=

1

N
Im

NX
j=1

1

H − E − i�
(j; j)



Decomposing H as

H =

 
h11 a∗

a B

!
we �nd (Feshbach map)

1

H − z
(1;1) =

1

h11 − z − a · (B − z)−1a
=

1

h11 − z − 1
N

P
�

��
��−z

with

�� = N |a · u�|2 ⇒ E �� = 1

where �� and u� are eigenvalues and eigenvectors of B.

We conclude that

Im
1

H − E − i�
(1;1) ≤

1

� + 1
N

P
�

�
(��−E)2+�2

≤
N�P

�:|��−E|≤� ��
≤
C

�
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Fixed point equation: we consider the Stieltjes transform

mN(z) =
1

N
Tr

1

H − z
; msc(z) =

Z
dy
�sc(y)

y − z
Convergence of the density follows if we can prove that

mN(z)→ msc(z); for Im z = � ≥ K=N:

The Stieltjes transform msc solves the �xed point equation

msc(z) +
1

z +msc(z)
= 0

It is enough to show that, with high probability,�����mN(z) +
1

z +mN(z)

����� ≤ �
To this end, we use again

mN(z) =
1

N

X
j

1

hjj − z − 1
N

P
�

�
(j)
�

�
(j)
� −z
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Delocalization of eigenvectors: let v = (v1; : : : ; vN) be an ‘2-

normalized vector in CN . Distinguish two extreme cases:



Idea of proof: we write v = (v1;w). Hence Hv = �v implies 
h− � a∗

a





Universality: local eigenvalue statistics in the limit N → ∞ is

expected to depend only on symmetry, but to be independent of

probability law of matrix entries.

Remark: universality at the edges of the spectrum was estab-

lished by Soshnikov in 1999 using the moment method. Here I

will consider universality in the bulk of the spectrum.

In 2001, Johansson established the validity of bulk universal-

ity for ensembles of hermitian Wigner matrices with a Gaussian

component.
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Johansson’s approach: consider matrices of the form

H = H0 + t
1
2 V

where V is a GUE-matrix, and H0 is an arbitrary Wigner matrix.

The matrix H can be obtained by letting every entry of H0 evolve

under a Brownian motion up to time t (more prec. t=N).

The distribution of the eigenvalues of the matrix evolves then

according to Dyson’s Brownian motion

d�� =
dB�



The joint probability distribution of the eigenvalues x = (x1; : : : ; xN)
of H is

p(x) =
Z

dy qt(x; y) p0(y)

where p0 is the distribution of the eigenvalues y = (y1; : : : ; yN)
of H0 and

qt(x; y) =
NN=2

(2�t)N=2

�N(x)

�N(y)
det

�
e−N(xj−yk)2=2t

�N
j;k=1

;

with the Vandermonde determinant

�(x) =
NY
i<j

(xi − xj) = det

0BBB@
1 1 : : : 1
x1 x2 : : : xN



The k-point correlation function of p is therefore given by

p(k)(



Convergence of k-point correlation follows from

1

N%(u)
Kt;N

 
u+

x1

N%(u)
; u+

x2

N%(u)
; y

!
→

sin�(x2 − x1)

�(x2 − x1)
for a.e. y

To prove convergence of Kt;N to sine-kernel 6d [(y)040





Saddles are determined by the equation

f ′N(z) =
1

t
(z − u) +

1

N

X
j

1

z − y



The integration paths can be shifted to pass through the saddles.

Only important contribution arises from z; w both close to qN;±.

Contribution from saddles can be computed through local change

of variable which makes the exponent quadratic (Laplace method).

As N →∞, saddle contribution leads to sine-kera89s



Time reversal to remove Gaussian part: let h(x) be the den-

sity of the matrix elements of H0.

The matrix elements of H = H0 + t
1
2 V have density

ht(x) = (etLh)(x); with L =
1

2

d2

dx2

Then Z |ht(x)− h(x)|2

h(x)
dx ≤ Ct2

Letting F = h⊗N
2

and Ft = (etLh)⊗N
2

we �ndZ |Ft − F |2
F

dx1 : : : dxN2 ≤ CN2t2

It is only small for t� N−1.

Hence t = N−1+" is still not enough.
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We would like to write

h = etLf with f = e−tLh

But the heat equation cannot be reversed.

⇒ approximate inversion of heat semigroup

De�ne vt = (1− tL)h. Then

ht = etLvt = etL(1−tL)h ' h+t2L2h
�
while etLh ' h+ tLh

�
Therefore Z |ht − h|2

h
dx ≤ Ct4

Hence, if F = h⊗N
2

and Ft = h⊗N
2

t , we �ndZ |Ft − F |2
F

dx1 : : : dxN2 ≤ CN2t4 � 1 for t = N−1+"
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Theorem [Erd}os-P�ech�e-Ramirez-S.-Yau]: Suppose H is a
hermitian Wigner matrix, whose entries have law g = e−h, for
h ∈ C6(R). Then,

lim
N→∞

1

�2
sc(E)

p
(2)
N

 
E +

x1

N�sc(E)
; E +

x2

N�sc(E)

!
=

sin(�(x1 − x2))

(�(x1 − x2))

Shortly after we posted our result, Tao-Vu submitted a paper
with same results. Combining two approaches, one can remove
all conditions, at least after averaging over the variable u.

Theorem [Erd}os-Ramirez-S.-Tao-Vu-Yau, 2009]: Fix " > 0
and |u0| < 2− ". Fix k ≥ 1, then

lim
N→∞

1

2"

Z u0+"

u0−"
du

1

[�sc(u)]k
p(k)

�
u+

x1

N�sc(u)
; : : : ; u+

xk
N�sc(u)

�

= det

 
sin(�(xi − xj))

�(xi − xj)

!k
i;j=1
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The local relaxation 
ow: Dyson Brownian Motion (DBM)
describes evolution of eigenvalues. The equilibrium measure is
the GUE measure

�(x)dx =
e−H(x)

Z
dx; H(x) = N

24 NX
j=1

x2
j

2
−

2

N

X
i<j

log |xj − xi|

35
The evolution of an initial probability density function f� w.r.t
DBM is described by the heat equation

@tft = Lft;

with the generator

L =
NX
i=1

1

2N
@2
i + 2

NX
i=1

0@− 1

4
xi +

1

2N

X
j 6=i

1

xi − xj

1A@i
Relaxation time of Dyson’s Brownian motion given by

1

2N
∇2H ≥ O(1) ⇒ relaxation on times O(1)
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Idea: introduce new 
ow with shorter relaxation time. De�ne

fH(x) = N

24 NX
j=1

0@x2
j

2
+

1

2R2
(xj − 
j)2

1A− 2

N

X
i<j

log |xj − xi|

35
= H(x) +

N

2R2

NX
j=1

(xj − 
j)2

where 
j is position of the j-th eigenvalue w.r.t. semicircle law,
and R = N−" � 1.

Introduce new equilibrium measure !(x) = e− eH(x)= eZ and new
evolution

@tgt = eLgt with eL = L−
1





This implies universality for ensembles of the form H0 + t1=2V ,
if t ≥ N−", for arbitrary symmetry.

Time-reversal argument implies universality for all matrices whose
entries have enough regularity.

Combining with the result of Tao-Vu, we �nd universality for
arbitrary ensembles.

Theorem [Erd}os, S., Yau, 2009]: For arbitrary hermitian,
symmetric or symplectic Wigner matrices with subexponentially
fast decaying entries, the weak limit as N →∞ of the averaged
k-particle correlation function

1

2"

Z E+"

E−"
du

1

�ksc(u)
p

(k)
N

 
u+

x1

�sc(u)N
; : : : ; u+

xk
�sc(u)N

!

coincides with that of the corresponding Gaussian ensemble (GUE,
GOE, or GSE) for all |E| < 2 and " > 0.
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Tao-Vu approach: let H and H ′ be two Wigner matrices whose
entries have distribution x; y; assume that typical distance be-
tween eigenvalues is order one (x; y '

√
N).

Assume that

Exm = E ym for 1 ≤ m ≤ 4

Fix k ≥ 1 and consider a nice function G : Rk → R. Then��EG(��1(H)



Therefore

|EF (x)− EF (y)| ≤ E |x|5F (v)(0)

Observe

E|x|5 ' N5=2 but F (m)(0) ' N−m

In fact

F ′(0) = G′(��(H)) ·
@��

@hij
= G′(��(H)) · v�(i)v�(j) ' N−1

Hence

|EF (x)− EF (y)| ≤ CN−5=2

Repeating this argument N2



Universality (Tao-Vu): for given H, �nd Johansson matrix

Ht = e−t=2H0 + (1− e−t)1=2V

such that H and Ht have four matching moments.

This is only possible if entries are supported on at least 3 points.

Universality (Erd}os-Ramirez-S.-Tao-Vu-Yau): compare H with

the evolved matrix

Ht = e−t=2H + (1− e−t)1=2V

with t = N−1+�.

Moments do not match, but they are very close.
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