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Summary of standard extreme-value statistics:

† Let z1; : : : ; zN be i.i.d. random variables with probability density function p(z).
Let yN = maxi=1;:::;Nfzng be maximum of the set, and FN(y) = Prob(yN < y)
be the distribution of the maximum. Then for N À 1 the distribution approaches
a scaling form FN(y) … F1 [(y + aN)=bN ] where aN ; bN depend on p(z) but the
shape of F1 is universal, and given by

F1(y) =

8
><
>:

e¡e¡y
; 8y Gumbel class: z < 1 and p(z ! 1) » Ae¡zfi

; fi > 0
e¡y¡fi

; y ‚ 0 Fréchet class: z < 1 and p(z ! 1) » Az¡(fi+1)

e¡[¡y]fi; y • 0 Weibull class: z < a and p(z ! a) » A(a ¡ z)(fi¡1)

The result is rather robust if variables are short-range correlated. In particular, for
Gaussian-distributed variables with < zi >= 0 the Gumbel distribution is known to
be valid as long as C(ji ¡ jj) = hzizji . const= ln ji ¡ jj for ji ¡ jj À 1.

Very few explicit results exist for extrema of strongly correlated variables, as e.g.
for Brownian motion by Majumdar & Comtet, or for the largest eigenvalues of
random matrices by Tracy & Widom.



Gaussian Free Field: definition:

† Given any domain D consider the Laplace operator ¡¢ and denote ej(x)
and ‚j > 0 for j = 1; 2; : : : ; 1 its eigenfunctions/eigenvalues corresponding to
the Dirichlet boundary conditions. Then the functions ~ej(x) = 1p

‚j
ej(x) form an

orthonormal basis of the Hilbert space H w.r.t. the so-called Dirichlet scalar product

(f; g) =
Z

D



Gaussian Free Field: examples:

† GFF on the interval D = [0; 1]. Eigenf./eigenv. for the Laplacian ¢ = ¡ d2

dx2

(Dirichlet b.c.): en(x) =
p

2 sin n…x; ‚n = …2n2. The corresponding GFF is given
by the random Fourier series V (x) =

P1
n=1 ‡n

p
2

…n sin n…x, with the covariance given
by the Green function G(x1; x2) = min (x1; x2)[1 ¡ max (x1; x2)] - Brownian bridge.

† GFF on the two-dimensional disk: D = jzj < L where z = x + iy. The Green
function is given by G(z1; z2) = ¡ 1

2… ln Ljz1¡z2j
L2¡z1z2

. In particular, for any two points
jz1;2j ¿ L (i.e. well inside the disk) we recover the full-plane formula

G(z1; z2) = ¡ 1

2…
ln

jz1 ¡ z2j
L

, P [V (x)] / exp ¡1

2

Z
[rV (x)]

2
d

2x

† Using the full-plane logarithmic GFF we can construct various one-dimensional
Gaussian random processes with logarithmic correlations. In particular, sampling
the values of such GFF along a circle of unit radius with coordinates z = eit; t 2
[0; 2…) we get a Gaussian process with mean zero and the covariance

hV (t1)V (t2)i = ¡ 1

2…
ln jeit1 ¡ e

it2j



Such a process turns out to be equivalent to the random Fourier series of the form
V (t) =

P1
n=1

1p
n

£
vneint + vne¡int

⁄
, where vn; vn are i.i.d. complex Gaussian variables

with variance hvnvni = 1. As the power associated with a given Fourier harmonic with index
n decays like 1=n such signals are known as 1=f noises believed to be ubiquitous in Nature.



Problem:

† Given an instance of the full-plane 2D Gaussian free field:

P [V (x)] / exp ¡ 1
8…g2

Z
[rV (x)]2 d2x

characterized by the covariance

hV (x1)V (x2)i = ¡2g2 ln jx1 ¡ x2j

we wish to understand the statistics of its minima/maxima along
various curves in the plane, and ultimately in various planar domains.

† The problem turns out to be intimately connected to the mechanism of freezing
transitions in disordered systems theory (Random Energy Models, Dirac fermions
in random magnetic field). It has also interesting relations to Liouville Quantum
Gravity & conformal field theory, to multifractal random measures,1=f noises,
and processes arising in turbulence and mathematical finance, as well as to various
aspects of Random Matrix Theory.



Idea of the method: We concentrate on considering samples of the
full-plane Gaussian Free Field (2dGFF) along planar curves C
parametrised by x(t) = (x(t); y(t)) with real t 2 [a; b].
Given a measure d„‰(t) = ‰(t) dt, we consider the integral

Zfl = †fl2g2
Z b

a

e¡flV†(x(t))d„‰(t); fl > 0

where V†(x) is the regularized version of the 2dGFF with a short scale
cutoff † ¿ 1, i.e. zero mean and the covariance

hV†(x)V†(x0)i = ¡2g2 ln jx¡x0j† =
‰ ¡2g2 ln jx ¡ x0j; jx ¡ x0j > †

2g2 ln(1=†); jx ¡ x0j < †

The integral is to be interpreted as the partition function of the
associated Random Energy Model at the temperature T = fl¡1. This
is to be studied in the limit † ! 0.



Guiding example: CIRCULAR LOGARITHMIC MODEL:
Let the contour C be the unit circle: x(t) = cos t; y(t) = sin t, with
t 2 [0; 2…). Sample the 2d Gaussian Free Field at M equidistant
points along the circle with tk = 2…

M (k ¡ 1); k = 1; : : : ; M

As the distance jx1 ¡x2j between a pair of points is simply 2j sin t1¡t2
2 j, we deal with

the collection of M normally distributed variables with covariances

hVkVmi = ¡2g2 ln j2 sin
2…





Outcome of the analysis:
The probability density P(Z) of the partition function Zcirc(fl) · Z in
the high-temperature phase ° = fl2g2 < 1 consists of two pieces. The
"body" of the distribution is given by:

P(Z) =
1
°

1
Z

µ
Ze

Z

¶1
°

e¡(Ze
Z )

1
°

; Z ¿ M2

which has a pronounced maximum at Z » Ze = M1+°

¡(1¡°) ¿ M2, and
the powerlaw decay at Ze ¿ Z ¿ M2.
At Z À M2 the above expression is replaced by the lognormal tail:

P(Z) =
Mp

4…° ln M

1
Z

f

µ
1
2

ln Z

ln M

¶
e

¡ 1
4 ln M° ln2 Z where f(x) » O(1) for x » O(1)

Now we define z = Z=Ze, put the coupling constant g = 1 and consider the
generating function

gfl(x) =
›
exp(¡eflxz)

fi
MÀ1

; fl = 1=T



Freezing scenario: In the high-temperature phase fl < flc = 1 the
generating function gfl(x) can be found explicitly and turned out to
satisfy a remarkable duality relation:

gfl(x) =
Z 1

0

dt exp
n

¡t ¡ eflxt¡fl2
o

; ) gfl(x) = g1
fl
(x) :

This however does not allow to continue to fl > flc regime. The phase transition at fl = flc

is believed to be described by the following freezing scenario: gfl(x) freezes to the temperature
independent profile gflc(x) in the "glassy" phase T • Tc. The scenario is supported by
(i) a heuristic real-space renormalization group arguments for the logarithmic models (Carpentier,
Le Doussal ’01) revealing an analogy to the travelling wave analysis of polymers on disordered trees
(Derrida, Spohn 1989)
(ii) duality which implies

@flgfl(x)j
fl=fl¡

c
= 0 ; for all x

showing that the "temperature flow" of this function vanishes at the critical point fl = flc = 1

(iii) our numerics.



Assuming validity of such scenario for the problem in hand, one finds
the frozen profile for the circular model:

gcirc
flc

(x) = 2ex=2K1(2ex=2)

where K1(z) is the Macdonald function. This allows to reconstruct the
distribution of the free energy f = ¡fl¡1 ln z for any T < Tc. The
corresponding formula takes a form of an infinite series:

PCLM
fl>flc

(f) =
1

2…

Z 1

¡1
e

¡isf 1

¡(1 + is
fl )

¡
2

µ
1 +

is

flc

¶
ds

= ¡ d

df

2
641 +

1X
n=1

enflcf

n!(n ¡ 1)!¡
‡

1 ¡ nflc
fl

·
µ

flcf +
1

n
¡ 2ˆ(n + 1) +

flc

fl
ˆ

µ
1 ¡ n

flc

fl

¶¶
3
75

where ˆ(x) = ¡0(x)=¡(x). In the zero temperature limit fl ! 1 the
free energy distribution yields the extreme value probability density.



The minimum of the random potential is simply given by
Vmin = ¡ limT !0 f = const+x, with known const and the probability
density of x related to the frozen profile gflc(x) by

p(x) = ¡g
0
flc

(x) = ¡ d

dx

h
2e

x=2
K1(2e

x=2
)
i

(1)

This is different from Gumbel distribution pGum(x) = ¡ d
dx

£
exp ¡BeAx

⁄
.
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From circles to intervals:

For integers n = 1; 2; ::, a well defined and universal † ! 0 limits exist for the moments of the
partition function

D
Z

n
[0;1]

E
=

Z 1

0

: : :

Z 1

0

Y



2
ln(2

…

) +

Z 1
0

dt

t

¡ e¡Q
2t¡

e¡

xt

(1

¡

e¡

flt)(1

¡

e¡

t=fl)
+

e¡

t

2(

Q=

2

¡

x

)
2

+
Q=

2

¡

x

t

¢

This function is

2 ¡(

flx

)Gfl(

x

)



In this way we arrive to

Mfl(s) = Afl2
(s¡1)(2+fl2(2s+1))

…
1¡s

£
¡(1 + fl2(s ¡ 1))Gfl(fl

2 + 1
fl + fls)Gfl( 3

2fl + fls)Gfl(fl
2 + 3

2fl + fls)

Gfl(fl + 2
fl + fls)Gfl(1

fl + fls)2

with Afl =
Gfl( 1

fl
+fl)2G(2fl+ 2

fl
)

Gfl(
3fl
2 + 1

fl
)Gfl( 3

2fl
+fl)Gfl(

3fl
2 + 3

2fl
))

. To guarantee that we have found the correct

continuation, we have checked

(i) positivity: M(s) given above is finite and positive on the interval s 2 [0; +1[ that is all real

moments n = 1 ¡ s < 1 exist.

(ii) convexity: on this interval @2
s ln M(s) > 0.

(iii) For integer values of s gives back known positive/negative moments.

We can use the above expression to extend the duality relation:

gfl(x) = g1
fl
(x) :

to the case of the interval [0; 1].



Under the freezing hypothesis we extract the frozen profile gflc(x).
For the general case the expression can be obtained as expansion in
powers of ex for x ! ¡1. For example, for a = b = 0

gflc(x ! ¡1) = 1 + (x + A
0
)e

x
+ (A + By + Cx

2
+

1

6
x

3
)e

2x
+ : : : (2)

with A0 = 2°E + ln(2…) ¡ 1 and C = ¡0:253846, B = 1:25388, A = ¡5:09728. For the
special case a = b = ¡1=2 we obtain the closed form expression:

gflc(x) =
…

4

Z +1

¡1

dtp
2…

e
¡t2

2 ¡2
p

ln 2t
Z 1

ex

µ
1 ¡ ex

u

¶
e

¡
p

…u=2 e¡
p

ln 2t
du

Although these expressions are different from the circle case, the
universal Carpentier-Le Doussal tail for the probability density of
extreme values

p(x ! ¡1) = ¡g
0
flc

(x ! ¡1) » ¡xe
x

is shared by all these distributions. It has its origin in the characteristic
tail of the partition function density P (z À 1) / 1=z2 developed at
criticality, with the first moment < z > becoming infinite.



Conclusions & Discussions:

† Using the methods of statistical mechanics we were able to
extract the explicit expressions for distributions of extrema of
the Gaussian Free Field sampled along (i) circles of unit radius
and (ii) intervals of unit length. The distributions are manifestly
non-Gumbel and show universal backward tail. The results are

expected to describe extreme value statistics for 1=f signals, and in this way could be



Our method was based on a few assumptions, most importantly
(i) freezing scenario for REM-type models, and (ii) ability to continue
Selberg integrals away from positive integers to the complex plane (can
be put on the rigorous basis by a method developed recently in D.
Ostrovsky Comm. Math. Phys. 288 (2009) 287-310 )

It remains a challenge:

† to verify/justify the freezing scenario

† to understand universality of the results for other 1d curves

† to access extreme value statistics of GFF in 2D domains.

Related work in progress:

Statistics of velocities in decaying Burgers turbulence with correlated
initial conditions < v(x)v(x0) >» jx ¡ x0j¡2.


