"Angular" matrix integrals

Brunel University, 19 December 2008 *J.-B. Zuber*

A. Prats Ferrer, B. Eynard, P. Di Francesco, J.-B. Z.. "Correlation Functions of .ys.ber **Z**IniZ.

Matrix integrals

$$Z_G = \int_G D \exp N \quad e(\text{tr}(J))$$
 (1)

$$Z^{(G)} = \int_{G} D \exp N \qquad e(\operatorname{tr}(A B^{\dagger})) \tag{2}$$

over a compact group G, are frequently encountered in physics (and in maths): "Bessel matrix functions" or "angular matrix integrals".

G = O(N), U(N), Sp(N), with respectively = 1, 2, 4.

Invariance under J $_{1}J$ $_{2}$ and A $_{1}A$ $_{1}^{\dagger}$, B $_{2}B$ $_{2}^{\dagger}$, resp.

 Z_G expressible as a sum of $_i \operatorname{tr} (JJ^\dagger)^{p_i}$ and $Z^{(G)}$ as a sum of $_i \operatorname{tr} A^{p_i}$ $_i \operatorname{tr} B^{q_j}$

Matrix integrals
$$Z_G = \int_G D \exp N \qquad e(\text{tr}(J)) \tag{1}$$

$$Z^{(G)} = \int_{G} D \exp N \qquad e(\operatorname{tr}(A B^{\dagger})) \tag{2}$$

over a compact group G, are frequently encountered in physics (and in maths): "Bessel matrix functions". Mostly studied for G = U(N) (= 2). What happens for other groups, e.g. G = O(N) (= 1), Sp(N) (= 4)?

- If A and B are both real skew-symmetric (i.e. in the Lie algebra of o(N)), resp. both quaternionic antiselfdual (in sp(N)), Z is known exactly from the work of Harish-Chandra '57. Also correlation functions are known [Eynard et al].
- If A and B are both real symmetric, resp. both quat. selfdual, much more complicated and elusive, [Brézin & Hikami '02-06, Bergère & Eynard 08].
- if they are neither, ...?
- Expect simplification as N [Weingarten '78]. Universality of (1), (2).

1. The Harish-Chandra integral. [Harish-Chandra 1957]

For A and B in the Lie algebra $\mathfrak g$ of G, in fact in a Cartan algebra

$$Z^{(G)} = \int_{G} D \exp N \operatorname{tr}(A B^{\dagger}) = \operatorname{const.}_{W W} \frac{\exp N \operatorname{tr} AB^{W}}{G(A) G(B^{W})}$$
(3)

 $_G(A) := _{>0}$, A , a product over the positive roots, W the Weyl group.

685190Td[()]T9626Tf6.57645.85190TU9626Tf7.65120Td[(B3]TJ

D

•
/

.

1. The Harish-Chandra integral [Harish-Chandra 1957]

For A and B in the Lie algebra $\mathfrak g$ of G, in fact in a Cartan algebra

$$Z^{(G)} = \int_{G} \mathsf{D} \exp \mathsf{N} \operatorname{tr}(\mathsf{A} \; \mathsf{B}^{-\dagger}) = \operatorname{const.} \frac{\exp \mathsf{N} \operatorname{tr} \mathsf{A} \mathsf{B}^{\mathsf{W}}}{G(\mathsf{A}_{\bullet}^{\bullet}^{\bullet}(\mathsf{A}_{\bullet}^{\bullet}(\mathsf{A}_{\bullet}^{\bullet}(\mathsf{A}_{\bullet}^{\bullet}(\mathsf{A}_{\bullet}^{\bullet}(\mathsf{A}_{\bullet}^{\bullet}(\mathsf{A}_{\bullet}^{\bullet}(\mathsf{A}_{\bullet}^{\bullet}(\mathsf{A}_{\bullet}^{\bullet}(\mathsf{A}_{\bullet}^{\bullet}(\mathsf{A}_{\bullet}^{\bullet}(\mathsf{A}_{\bullet}^{\bullet}(\mathsf{A}_{\bullet}^{\bullet}(\mathsf{A}_{\bullet}^{\bullet}(\mathsf{A}_{\bullet}^{\bullet}(\mathsf{A}$$

1. The Harish-Chandra integral [Harish-Chandra 1957]

For A and B in the Lie algebra $\mathfrak g$ of G, in fact in a Cartan algebra

$$Z^{(G)} = \int_{G} D \exp N \operatorname{tr}(A B^{\dagger}) = \operatorname{const.} \frac{\exp N \operatorname{tr} A B^{W}}{G(A) G(B^{W})}$$
 (5)

 $_{G}(A) := _{>0}$, A , a product over the positive roots, W the Weyl group.

More concretely, for G = U(N), take $A = diag(a_i)$, $B = diag(b_i)$

$$Z^{(U)} = \text{const.} \frac{\det e^{-Na_ib_j}}{\int_{i< j} (a_i - a_j)(b_i - b_j)} \text{ [Itzykson-Z '80]}$$

and for G =

Proofs of this H-C formula

Heat kernel

$$Z = t^{-\frac{1}{2}\dim G} \int_G D$$
 $e^{-\frac{1}{2t}N \operatorname{tr}(A - B^{\dagger})^2}$ satisfies $(N - \frac{1}{t} - \frac{1}{2} - \frac{2}{A})Z = 0$ and boundary cond $Z - \operatorname{const} \int_G d (A - B^{\dagger})$. Rewrite in "radial coordinates" a_i using the expression of the Laplacian

$$_{A}^{2}=_{G}^{-2}(A) \qquad \qquad i \qquad \qquad i$$

Correlation functions

What about the associated "correlation functions" of invariant traces

$$\int D e^{-\operatorname{tr} A B^{\dagger}} \operatorname{tr} (A^{p_1} B^{q_1}^{\dagger} ^{\dagger} A^{p_2} e^{D} e$$

Correlation functions

What about the associated "correlation functions" of invariant traces

$$\int D e^{-\operatorname{tr} A B^{\dagger}} \operatorname{tr} (A^{p_1} B^{q_1}^{\dagger} A^{p_2} \cdots)$$
?

(still invariant under A $_{1}A$ $_{1}^{\dagger}$, B $_{2}B$ $_{2}^{\dagger}$)

Is there still some localization property? Yes!

$$\int D e^{-\operatorname{tr} A B^{\dagger}} F(A, B^{\dagger}) = c_{n} \frac{e^{-\operatorname{tr} A B^{W}}}{(A) (B^{W})} \int_{\mathsf{n}_{+} = [\mathsf{b}, \mathsf{b}]} \mathsf{D} T e^{-\operatorname{tr} T T^{\dagger}} F(A + T, B^{W} + T^{\dagger})$$

2. The integral (2) in the symmetric case

$$Z^{(G)} = \int_G D \exp N \operatorname{tr}(A B^{\dagger})$$

for $A = A^{\dagger}$ and $B = B^{\dagger}$.

For G = U(N), A and B hermitian rather than *anti*hermitian, no difference, HCIZ formula works.

For G = O(N), A and B real symmetric, ??G105.982 ??G105.1898pd[(real)-250(symme10051)-25902Td[(F)15(or)]TJ/F329.96

Many nice features

finite (semi-classical) expansion and " -expansion" for an

$$_k M_{ik} = _j M_{ik} = Z$$
 and $_j K_{ij} M_{jk} = (N) M_{ik} b_k$. Can iterate that equation to get

$$K_{ij}^{p}M_{jk}=M_{ik}(N)^{p}b_{k}^{p}$$

and summing over i and k

$$(K_{ij}^p) \quad Z = (N)^p \operatorname{tr} B^p Z.$$
 (7)

a differential operator of order p

Two remarks

1. This solves the following problem:

Define the differential operator $D_p(/A)$ by $D_p(/A)e^{N\operatorname{tr} AB} = N^p\operatorname{tr} B^p e^{N\operatorname{tr} AB}$

If D_p acts on *invariant functions* $F(A) = F(A^{\dagger})$, how to write it in terms

of / a

3. Large N limit

Expect things to simplify as *N* [Weingarten '78]. Look at the "free energies" :

$$W_G(J.J^{\dagger}) = \lim_{N} \frac{1}{N^2} \log Z_G$$

and

$$F_G(A, B) = \lim_{N} \frac{1}{N^2} \log Z^{(G)}$$

Then W(X) and F(A, B) are, up to an overall factor, independent of G = O(N), U(N)!

(Not true at finite N!)

More precisely,

$$W_{\mathcal{O}}(J.J^{\dagger}) = \frac{1}{2}$$

For $Z_0 = \int_{O(N)} DO \exp N tr(J.O)$, follow the steps of [Brézin-Gross '80]: the trivial identity $\int \frac{^2Z_0}{J_{ij}J_{kj}} = N^2_{ik}Z_0$ is reexpressed in terms of the eigenvalues $_i$ of the real symmetric matrix $J.J^t$:

4
$$i^{\frac{2}{2}} Z_{0} + \sum_{j=i}^{2} \frac{2}{j-i} \frac{Z_{0}}{j} - \frac{Z_{0}}{i} +$$

For $Z^{(O)} = \int_{O(N)} DO(D) \exp N tr(AOBO^t)$, take A and B both skew-symmetric, or both symmetric.

• A and B both skew-symmetric [Harish-Chandra]

block-diagonal form A = diag $\begin{array}{cccc}
0 & a_i \\
-a_i & 0
\end{array}$, B likewise, recall

$$Z^{(O)} = \text{const.} \frac{\det(2\cosh 2Na_ib_j)}{O(a) O(b)}$$

(for O(N = 2m)), with
$$O(a) = \int_{a_i < j} \int_{a_i} (a_i^2 - a_j^2)$$
.

Regard A as $N \times N$ anti-Hermitian, eigenvalues $A_j = \pm i a_j$, B likewise. Easy to check that as N

$$Z^{(U)}(A,B) = \frac{\det e^{2NA_iB_j}}{(A)(B)} \qquad \frac{(\det(e^{2Na_ib_j})_1 i,j m}{O(a)O(b)} = (Z^{(O)}(A,B))^2$$

A and B both symmetric

Can take them in diagonal form $A = \text{diag } a_i$, $B = \text{diag } b_i$

Then Bergère-Eynard equation $D_pZ = (N)^p \operatorname{tr} B^p Z$ (7), in the large N limit, yields

$$\frac{N}{i} \frac{F^{(G)}}{a_i} + \frac{1}{2N} \frac{1}{j=i} \frac{1}{a_i - a_j} = \operatorname{tr} B^p$$
 (11)

Hence $F^{(O)}$ (= 1) satisfies same set of equations as $\frac{1}{2}F^{(U)}$ (= 2), QED.

Particular case where *A* is of finite *rank r*. Then in the expansion of $F = \rho, q \left(\frac{1}{N} \operatorname{tr} A^{p_i} \right) \left(\frac{1}{N} \operatorname{tr} B^{q_j} \right)$, terms with a single trace of *A* dominate.

In the U(N) case (and N) ([IZ '80])

$$F^{(U)} = \frac{1}{\rho} (\frac{1}{N} \operatorname{tr} A^{\rho}) \quad \rho(B)$$

where p(B) = p-th "non-crossing cumulant" of B ([Br

Spin glass Hamiltonian with *n* replicas of *N* Ising spins

$$H = \bigcup_{\substack{i,j=1 \ a=1}}^{N} \bigcap_{\substack{i=1 \ ij}}^{n} O_{ij} \qquad \text{of rank} \qquad n$$

with a coupling O_{ij} , a real, orthogonal, symmetric matrix with an equal number of ± 1 eigenvalues, $O = V^t.D.V$.

Have to compute $Z = \int_{O(N)} dV \exp tr DV V^t$.

Now according to Marinari, Parisi, Ritort, pretend you integrate over the unitary group,

compute $\frac{1}{\rho}$ tr ρ $\rho(D) =: \text{tr } G()$

and (with some insight . . .) the correct formula is $\frac{1}{2}G(2)$! . . .

Proved later by Collins, Collins and Sniady, Guionnet & Maida

Conclusion and Open issues

- More explicit formulae for Z, F
- A priori argument for universality, graphical argument?
- Relations with integrability: D-H localization, finite semi-classical expansions, Calogero, . . .